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Abstract. Much of the recent work in Semantic Search is concerned with
addressing the challenge of finding entities in the growing Web of Data. How-
ever, alongside this growth, there is a significant increase in the availability
of ontologies that can be used to describe these entities. Whereas several
methods have been proposed in Semantic Search to rank entities based on
a keyword query, little work has been published on search and ranking of
resources in ontologies. To the best of our knowledge, this work is the first to
propose a benchmark suite for ontology search. The benchmark suite, named
CBRBench3, includes a collection of ontologies that was retrieved by crawling
a seed set of ontology URIs derived from prefix.cc and a set of queries de-
rived from a real query log from the Linked Open Vocabularies search engine.
Further, it includes the results for the ideal ranking of the concepts in the
ontology collection for the identified set of query terms which was established
based on the opinions of ten ontology engineering experts.
We compared this ideal ranking with the top-k results retrieved by eight
state-of-the-art ranking algorithms that we have implemented and calculated
the precision at k, the mean average precision and the discounted cumula-
tive gain to determine the best performing ranking model. Our study shows
that content-based ranking models outperform graph-based ranking models
for most queries on the task of ranking concepts in ontologies. However, as
the performance of the ranking models on ontologies is still far inferior to
the performance of state-of-the-art algorithms on the ranking of documents
based on a keyword query, we put forward four recommendations that we
believe can significantly improve the accuracy of these ranking models when
searching for resources in ontologies.

1 Introduction
The growth of Linked Data in recent years has given rise to the need to represent
knowledge based on ontologies. Prefix.cc4, a service to register prefixes, counts about
~1250 such ontologies (April 2014) whereby many cover similar domains, e.g. our
crawl found the concept Person to exist in 379 ontologies. One of the major advan-
tages claimed of ontologies, however, is the potential of “reuse” opposed to creating a
new ontology from scratch. Consequently, finding the right ontology, or more specif-
ically classes and properties within ontologies that match the intended meaning for
a specific use case is an important task that is becoming increasingly difficult.
The Linked Open Vocabularies (LOV) search engine5, initiated in March 2011, is

to the best of our knowledge, the only purpose-built ontology search engine available
on the Web with an up-to-date index. It uses a ranking algorithm based on the term
popularity in Linked Open Data (LOD) and in the LOV ecosystem [22].
3 https://zenodo.org/record/11121
4 http://prefix.cc
5 http://lov.okfn.org



There are also some ontology libraries available that facilitate the locating and
retrieving of potentially relevant ontology resources [13]. Some of these libraries
are domain-specific such as the Open Biological and Biomedical Ontologies library6

or the BioPortal [14], whereas others are more general such as OntoSearch [20] or
the TONES Ontology Repository7. However, as discussed by Noy & d’Aquin [13]
only few libraries support a keyword search and basic ranking, and only one (Cup-
board [2]) supports a ranking of ontologies based on a user query using an informa-
tion retrieval algorithm (i.e. tf-idf), while no library supports the ranking of resources
within the registered ontologies.
Semantic Search engines such as Swoogle [4] (which was initially developed to

rank ontologies only), Sindice.com [21], Watson [3], or Yars2 [8] do allow a search
of ontology resources through a user query. The ranking in these search engines fol-
lows traditional link-based ranking methods [10], in particular adapted versions of
the PageRank algorithm [15], where links from one source of information to another
are regarded as a ‘positive vote’ from the former to the latter. Often, these ranking
schemes also take the provenance graph of the data into account [9]. Other strate-
gies, mainly based on methods proposed in the information retrieval community, are
employed in Semantic Search [5], but what all these methods have in common is
that they are targeted to rank entities, but do not work well for ranking classes and
properties in ontologies [4, 1].
The task of ranking resources defined in ontologies can be based on many differ-

ent criteria [6], for example, how well an ontology meets the requirements of certain
evaluation tests (e.g. [7]) or on methods to evaluate general properties of an ontology
based on some requirement (e.g. [11]). However, only limited work has been proposed
to rank the returned resources based on a user posed keyword query such that the
most relevant results appear higher in the list. Alani et al. [1] propose four mea-
sures (i.e. Semantic Similarity, Betweenness, Density and Class Match Measure) to
evaluate different representational aspects of the ontology and calculate its ranking.
In the information retrieval community many algorithms, such as the vector space

model, the boolean model, BM25, tf-idf, etc. have been proposed to identify and
rank a small number of potentially relevant documents through a top-k document
retrieval. To the best of our knowledge, no systematic study has been conducted to
compare the performance of these state-of-the-art ranking techniques on the task of
ranking resources in ontologies. For our study we have implemented eight ranking
algorithms, four of which have been proposed by the information retrieval community
whereas the others were adapted for the ranking of ontologies by Alani et al [1]. We
defined a set of queries derived from a real query log, and computed the ranking
for these queries on a collection of ontology resources that we have crawled with a
seed set of ontology URIs derived from prefix.cc. We computed a baseline ranking
and established a ground truth by asking ten ontology engineers to manually rank
ontologies based on a given search term from the collection of resources obtained
by the baseline ranking. We compared the ground truth derived through the human
evaluation with the results from each of the ranking algorithms. We calculated the
precision at k, the mean average precision and the discounted cumulative gain of the
ranking algorithms in comparison to a ground truth to determine the best model for
the task of ranking resources/ontologies. The contribution of this paper are:

6 http://www.obofoundry.org/
7 http://owl.cs.manchester.ac.uk/repository/



– a design of a benchmark suite named CBRBench, for Canberra Ontology Rank-
ing Benchmark, including an ontology collection, a set of queries and a ground
truth established by human experts for evaluating ontology ranking algorithms,

– a methodology for resource ranking evaluation where we discuss many of the
decision that need to be made when designing a search evaluation framework for
resources defined in ontologies,

– the evaluation of eight ranking algorithms through these benchmarks, and
– a set of recommendations derived from an analysis of our experiment that we

believe can significantly improve the performance of the ranking models.

The remainder of this paper is organised as follows. We begin with a discussion of
the ranking algorithms that we have implemented for this experiment in Section 2. In
Section 3, we describe the evaluation setup. We then present the results and a result
analysis in Section 4. Section 5 discusses some recommendations for the improvement
of the ranking models for ontology search, before we conclude in Section 6.

2 Ranking algorithms
We have chosen eight different ranking models that are commonly used for ranking
documents and/or ontologies and applied them on the task of ranking resources/on-
tologies according to their relevance to a query term. These eight ranking models
can be grouped in two different categories.
1. Content-based Ranking Models: tf-idf, BM25, Vector Space Model and Class

Match Measure.
2. Graph-based Ranking Models: PageRank, Density Measure, Semantic Sim-

ilarity Measure and Betweenness Measure.
Because of the inherit graph structure of ontologies, graph-based ranking models

can be used for ranking as such. However, content-based ranking models (e.g. tf-
idf, BM25 and Vector Space Model) need to be tailored towards ontologies so that
instead of using a word as the basic unit for measuring, we are considering a resource
r in an ontology as the measuring unit. Therefore, the relevance of a query word
to the ontology is the sum of the relevance of all the resources that match the
query term. For tf-idf we compute the relevance score of the resource, all other
algorithms generate a cumulative relevance score for the ontology and resources are
ranked according to the relevance score of their corresponding ontology. The matched
resource set for each term/word is selected from a corpus if a word exists in the value
of the 1) rdfs:label 2) rdfs:comment, or 3) rdfs:description property of that
resource or if the word is part of the URI of the resource. As most of the existing
adaptations of graph ranking models for ontology ranking do not compute a ranking
for properties in an ontology we only consider the ranking of classes/concepts in
this study. However, it turns out that only 2.6% of all resources in our corpus (cf.
Section 3) are properties.
In the following sections we introduce all ranking models, and describe the choices

we made to adapt them for the ranking of resources in ontologies. Common notations
used in the following sections are shown in Table 2.

2.1 tf-idf

Term frequency inverse document frequency (tf-idf) [18] is an information retrieval
statistic that reflects the importance of a word to a document in a collection or



Variable Description
O Corpus: The ontology repository
N Number of ontologies in O
O An ontology: O ∈ O
r A resource uri: r ∈ O & r ∈ URI
z Number of resources in O
Q Query String
qi query term i of Q
n number of keywords in Q
σO set of matched uris for Q in O
σO(qi) set of matched uris for qi in O : ∀ ri ∈ σO , ri ∈ O & ri matches qi

m number of uris in σO(qi)

Table 1. Notation used

corpus. For ranking ontologies we compute the importance of each resource r to an
ontology O in a ontology repository, where r ∈ R : R = URI only (i.e. excluding
blank nodes and literals).

tf(r,O) = 0.5 + 0.5 ∗ f(r,O)
max{f(ri, O) : ri ∈ O}

idf(r,O) = log
N

|{O ∈ O : r ∈ O}|
tf − idf(r,O,O) = tf(r,O) ∗ idf(r,O) (1)

Here tf(r,O) is the term frequency for resource r in O. tf(r,O) is the frequency of r
(number of times r appears in O) divided by the maximum frequency of any resource
ri in O. The inverse document frequency idf(r,O) is a measure of commonality of a
resource across the corpus. It is obtained by dividing the total number of ontologies
in the corpus by the number of documents containing the resource r, and then
computing the logarithm of that quotient. The final score of r for this query is the
tf-idf value of r.

Score(r,Q) = tf − idf(r,O,O) : ∀r{∃qi ∈ Q : r ∈ σ(qi)}
(2)

2.2 BM25
BM25 [17] is a ranking function for document retrieval used to rank matching doc-
uments according to their relevance to a given search query. Given a query Q, con-
taining keywords q1, ..., qn, the BM25 score of a document d is computed by:

score(d,Q) =
n∑
i=1

idf(qi, d) tf(qi, d) ∗ k + 1
tf(qi, d) + k ∗ (1− b+ b ∗ ( |d|avgdl ))

(3)

where tf(qi, d) is the term frequency and idf(qi, d) is the inverse document fre-
quency of the word qi. |d| is the length of the document d in words, and avgdl is
the average document length in the text collection from which the documents are
drawn. k1 and b are free parameters, usually chosen, in absence of an advanced
optimisation, as k1 ∈ [1.2,2.0] and b = 0.75.



In order to tailor this statistic for ontology ranking we compute the sum of the
score of each rj ∈ σO(qi) for each query term qi rather than computing the score
for qi. For the current implementation we used k1 = 2.0, b = 0.75 and |O| = total
number of terms (i.e. 3 * |axioms|) in the ontology. The final score of the ontology
is computed as:

score(O,Q) =
n∑
i=1

∑
∀rj :rj∈σO(qi)

idf(rj , O) tf(rj , O) ∗ k + 1
tf(rj , O) + k ∗ (1− b+ b ∗ ( |O|avgol ))

(4)

2.3 Vector Space Model
The vector space model [19] is based on the assumptions of the document similarities
theory where the query and documents are represented as the same kind of vector.
The ranking of a document to a query is calculated by comparing the deviation
of angles between each document vector and the original query vector. Thus, the
similarity of a document to a query is computed as under:

sim(d,Q) =
∑n
i=1 w(qi, d) ∗ w(qi, Q)

|d| ∗ |Q|
(5)

Here w(qi, d) and w(qi, Q) are weights of qi in document d and query Q respec-
tively. |d| is the document norm and |Q| is the query norm. For this implementation,
we are considering the tf-idf values of a query term as weights. Therefore, the simi-
larity of an ontology to query Q is computed as:

sim(O,Q) =
∑n
i=1 tf − Idf(qi, O) ∗ tf − idf(qi, Q)

|O| ∗ |Q|

tf − idf(qi, O) =
m∑
j=1

tf − idf(rj , O) : rj ∈ σO(qi)

tf − idf(qi, Q) = f(qi, Q)
max{f(q,Q) : q ∈ Q} ∗ log

N

|{O ∈ O : r ∈ O&r ∈ σO(qi)}|

|O| =

√√√√ z∑
i=1

(tf − idf(ri, O))2

|Q| =

√√√√ n∑
i=1

(tf − idf(qi, O))2 (6)

2.4 Class Match Measure
The Class Match Measure (CMM) [1] evaluates the coverage of an ontology for the
given search terms. It looks for classes in each ontology that have matching URIs for
a search term either exactly (class label ‘identical to’ search term) or partially (class
label ‘contains’ the search term). An ontology that covers all search terms will score
higher than others, and exact matches are regarded as better than partial matches.
The score for an ontology is computed as:

score
CMM

(O,Q) = αscore
EMM

(O,Q) + βscore
P MM

(O,Q) (7)



where score
CMM

(O,Q), score
EMM

(O,Q) and score
P MM

(O,Q) are the scores for
class match measure, exact match measure and partial match measure for the on-
tology O with respect to query Q, α and β are the exact matching and partial
matching weight factors respectively. As exact matching is favoured over partial
matching, therefore α > β. For our experiments, we set α = 0.6 and β = 0.4 (as
proposed in the original paper [1]).

score
EMM (O,Q) =

n∑
i=1

m∑
j=1

ϕ(rj , qi) : rj ∈ σO(qi)

ϕ(rj , qi) =
{

1 if label(rj) = qi
0 if label(rj) 6= qi

(8)

score
P MM

(O,Q) =
n∑
i=1

m∑
j=1

ψ(rj , qi) : rj ∈ σO(qi)

ψ(rj , qi) =
{

1 if label(rj) contains qi
0 if label(rj) does not contain qi

(9)

2.5 PageRank

PageRank [15] is a hyperlink based iterative computation method for document rank-
ing which takes as input a graph consisting of nodes and edges (i.e. ontologies as
nodes and owl:imports properties as links in this implementation). In each succes-
sive iteration the score of ontology o is determined as a summation of the PageRank
score in the previous iteration of all the ontologies that link (imports) to ontology O
divided by their number of outlinks (owl:imports properties). For the kth iteration
the rank of ontology O i.e. (scorek(O) ) is given as under:

scorek(O) =
∑
j∈deadlinks(O) Rk−1(j)

n
+

∑
i∈ininks(O)

Rk−1(i)
|outdegree(i)|

scorek(O) = d ∗ scorek(O) + 1− d
n

(10)

Here deadlinks(O) are ontologies in corpus O that have no outlinks, i.e. they never
import any other ontology. All nodes are initialised with an equal score (i.e. 1

n , where
n is total number of ontologies in O before the first iteration. In the experimental
evaluation, we set the damping factor d equal to 0.85 (common practise) and we
introduced missing owl:imports link among ontologies based on reused resources.

2.6 Density Measure
Density Measure (DEM) [1] is intended to approximate the information content of
classes and consequently the level of knowledge detail. This includes how well the
concept is further specified (i.e. the number of subclasses), the number of properties
associated with that concept, number of siblings, etc. Here score

DEM
(O,Q) is the

density measure of ontology O for query Q. Θ(rj , qi) is the density measure for
resource rj and w is a weight factor set for each dimensionality i.e. sub classes = 1,



super classes = 0.25, relations = 0.5 and siblings = 0.5 and k = n ∗m (i.e. number
of matched r) for query Q.

score
DEM

(O,Q) = 1
k

n∑
i=1

m∑
j=1

Θ(rj) : rj ∈ σO(qi)

Θ(rj) =
∑
sk∈S

wsk
|sk|

S = {ssub, ssup, ssib, srel}
w = {1, 0.25, 0.5, 0.5} (11)

2.7 Semantic Similarity Measure
The Semantic Similarity Measure (SSM) calculates how close the concepts of interest
are laid out in the ontology structure. The idea is, if the concepts are positioned
relatively far from each other, then it becomes unlikely for those concepts to be
represented in a compact manner, rendering their extraction and reuse more difficult.
score

SSM
(O,Q) is the semantic similarity measure score of ontology O for a given

query Q. It is a collective measure of the shortest path lengths for all classes that
match the query string.

score
SSM

(O,Q) = 1
z

z−1∑
i=1

z∑
j=i+1

Ψ(ri, rj) : ∀q∈Q((ri, rj) ∈ σO))

Ψ(ri, rj) =
{ 1

length(minp∈P {ri

p−→rj})
if i 6= j

1 if i = j
z = |(ri, rj)| (12)

2.8 Betweenness Measure
The Betweenness Measure (BM)[1] is a measure for a class on how many times it
occurs on the shortest path between other classes. This measure is rooted on the
assumption that if a class has a high betweenness value in an ontology then this
class is graphically central to that ontology. The betweenness value of an ontology is
the function of the betweenness value of each queried class in the given ontologies.
The ontologies where those classes are more central receive a higher BM value.
score

BM
(O,Q) is the average betweenness value for ontology O and k is the num-

ber of matched resources from O for Q. The betweenness measure for resource rj
i.e. ϑ(rj , qi) is computed as:

score
BM

(O,Q) = 1
k

n∑
i=1

m∑
j=1

ϑ(rj , qi) : rj ∈ σO(qi)

ϑ(rj , qi) =
∑

rx 6=ry 6=rj

λ(rx, ry(rj))
λ(rx, ry)

(13)

where λ(rx, ry) is the number of the shortest path from rx and ry and λ(rx, ry(rj))
is the number of shortest paths from rx and ry that passes through rj .



3 Experiment setup
To compare and evaluate the implemented ranking models we developed a bench-
mark suite named CBRBench, for Canberra Ontology Ranking Benchmark, which
includes a collection of ontologies, a set of benchmark queries and a ground truth es-
tablished by human experts. The CBRBench suite is available at https://zenodo.
org/record/11121.

3.1 Benchmark Ontology collection
To the best of our knowledge there exists no benchmark ontology collection for rank-
ing of ontologies. To derive at a representative set of ontologies used on the Web, we
used the namespaces registered at prefix.cc8 as our set of seed ontology URIs. We
crawled all registered prefix URIs and for each successfully retrieved ontology (we en-
countered hundreds of deadlinks and non-ontology namespaces) we also followed its
import statements until no new ontologies were found. This resulted in 1022 ontolo-
gies that we used as our benchmark collection. In total these ontologies define more
than 5.5M triples, including ~280k class definitions and ~7.5k property definitions.
We stored each ontology seperately as a named graph in a Virtuoso database.

3.2 Benchmark query terms
To test the ranking algorithms on a representative set of query terms we have used
the query log9 of the Linked Open Vocabularies (LOV) search engine [22] as input.
We ranked the most popular search terms in the log covering the period between
06/01/2012 and 16/04/2014 based on their popularity. For the most popular query
terms we checked through a boolean search if there is a representative sample of
relevant resources available in our benchmark ontology collection that at least par-
tially match the query term. We included ten search terms in our corpus where
there were at least ten relevant ontology classes in the result set. The chosen search
terms and their popularity rank within the Linked Open Vocabularies search log are
shown in Table 2. All queries are single word queries – that is for two reasons. First,
only about 11% of all queries posed on the LOV search engine use compound search
queries and no compound query was among the 200 most used queries and second,
for no compound query in the top 1000 query terms did the benchmark collection
contain enough relevant resources to derive at a meaningful ranking.
Although shallow evaluation schemes are preferred in web search engine evalua-

tions [16] we opted for a deep evaluation scheme for two reasons. First, there is only
a limited set of knowledge domains where there is a sufficient number of ontologies
available on the Web, and second, for the domains with a sufficient number of ontolo-
gies, many ontologies exist that define or refine similar concepts. This assumption
is confirmed by the high number of matching classes for the terms in our query set
(see for example Table 3).

3.3 Establishing the ground truth
We conducted a user study with ten human experts who were sourced from the
Australian National University, Monash University, the University of Queensland
and the CSIRO. Eight of the evaluators considered themselves to possess “Expert
8 http://www.prefix.cc
9 See http://lov.okfn.org/dataset/lov/stats/searchLog.csv



Table 2. Query terms

Search Term Rank
person 1
name 2
event 3
title 5
location 7
address 8
music 10
organization 15
author 16
time 17

Table 3. Ranking of “Person” in ground truth

URI Rank
http://xmlns.com/foaf/0.1/Person 1
http://data.press.net/ontology/stuff/Person 2
http://schema.org/Person 3
http://www.w3.org/ns/person#Person 4
http://www.ontotext.com/proton/protontop#Person 5
http://omv.ontoware.org/2005/05/ontology#Person 6
http://bibframe.org/vocab/Person 7
http://iflastandards.info/ns/fr/frbr/frbrer/C1005 8
http://models.okkam.org/ENS-core-vocabulary.owl#person 9
hhttp://swat.cse.lehigh.edu/onto/univ-bench.owl#Person 9

knowledge” and two considered themselves to have “Strong knowledge” in ontology
engineering on a 5-point Likert-Scale from “Expert knowledge” to “No Knowledge”.
All of the evaluators have developed ontologies before and some are authors of widely
cited ontologies. To reduce the number of classes our ten judges had to score for a
given query term (for some query terms a naïve string search returns more than 400
results) we asked two experts to pre-select relevant URIs. The experts were asked
to go through all resources that matched a query through a naïve string search and
evaluate if the URI is either “Relevant” or “Irrelevant” for the given query term. We
asked the two experts to judge URIs as “Relevant” even when they are only vaguely
related to the query term, i.e. increasing the false positive ratio.
We developed an evaluation tool which allowed our experts to pose a keyword

query for the given term that retrieves all matching ontology classes in the search
space. Since keyword queries where the intended meaning of the query is unknown
are still the prevalent form of input in Semantic Search [16] and since the meaning
of the search terms derived from our real query log was also unknown, we needed to
establish the main intention for each of our query terms. We used the main definition
from the Oxford dictionary for each term and included it in the questionnaire for our
judges. We then asked our ten human experts to rate the relevance of the results to
each of the 10 query terms from Table 2 according to their relevance to the definition
of the term from the Oxford dictionary. After submitting the keyword query, each
evaluator was presented with a randomly ordered list of the matching ontology classes
in the search space to eliminate any bias. For each result we showed the evaluator, the
URI, the rdfs:label and rdfs:comment, the properties of the class and its super-
classes and sub-classes. A judge could then rate the relevance of the class with radio
buttons below each search result on a 5-point Likert scale with values “Extremely
Useful”, “Useful”, “Relevant”, “Slightly Relevant” and “Irrelevant”. There was no
time restriction for the judges to finish the experiment. We assigned values from 0-4
for “Irrelevant”-“Extremely Useful” for each score and performed a hypothesis test on
the average scores per evaluator with a H0 µ = 2 against H1 µ <> 0. This resulted
in a p-value of 0.0004, a standard error of mean of 0.144 and a 95% confidence
interval for the mean score of (0.83,1.49), indicating there is a strong evidence that
the average scores per evaluator are not 2 which would indicate a randomness of
the scores. We also asked our ten evaluators to score 62 random response URIs for
the ten queries again two months after we performed our initial experiment. The
average scores of the ten evaluators for these URIs had a correlation coefficient of
0.93, indicating that in average, the scores of the participants in the second study
were highly correlated to the scores in the first study.



Table 3 shows the ideal ranking for the query “Person” as derived from the median
relevance scores from our ten experts. For ties we considered the resource with the
more consistent relevance scores (i.e. the lower standard deviation) as better ranked.
Not all ties could be resolved in this way as can be seen for rank No. 9.

3.4 Evaluation and Performance Measures
We consider three popular metrics from the information retrieval community, pre-
cision at k (P@k), mean average precision (MAP), and normalized discounted cu-
mulative gain (NDCG). Since we asked our judges to assign a non-binary value of
relevance (on a 5-point Likert scale), we converted these values to a binary value for
all those metrics that consider a binary notion of relevance. We chose a resource as
being relevant to the query term if the relevance score is equal or higher than the
average value on the 5-point Likert scale. Changing this cut off value to the right
or to the left of the average changes the overall precision of the result. However, the
relative performance of the algorithms remains the same.

Precision@k: We are calculating precision at k (P@k) for a k value of 10. P@k in
our experiment is calculated as:

p@k = number of relevant documents in top k results
k

Average Precision: The average precision for the query Q of a ranking model is
defined as:

AP (Q) =
∑k
i=1 rel(ri) ∗ P@i

k

where rel(ri) is 1 if ri is a relevant resource for the query Q and 0 otherwise, P@i
is the precision at i and k is the cut off value (i.e. 10 in our experiment). MAP is
defined as the mean of AP over all queries run in this experiment and is calculated
as:

MAP =
∑
Q∈QAP (Q)
|Q|

Normalize Discounted Cumulative Gain (NDCG): NDCG is a standard evaluation
measure for ranking tasks with non-binary relevance judgement. NDCG is defined
based on a gain vector G, that is, a vector containing the relevance judgements at
each rank. Then, the discounted cumulative gain measures the overall gain obtained
by reaching rank k, putting more weight at the top of the ranking:

DCG(Q) =
k∑
i=1

2reli − 1
log2(1 + i)

To compute the final NDCG, we divide DCG by its optimal value iDCG which
puts the most relevant results first. iDCG is calculated by computing the optimal
gain vector for an ideal ordering obtained from the median of the user assigned
relevance scores.



Table 4. MAP

Person Name Event Title Loc. Addr. Music Org. Author Time
boolean 0.17 0.00 0.23 0.02 0.00 0.66 0.39 0.02 0.08 0.44
tf-idf 0.75 0.44 0.82 0.51 0.73 0.89 0.48 0.70 0.28 0.53
BM25 0.19 0.74 0.03 0.40 0.08 0.49 0.18 0.32 0.62 0.00
vector-space 0.06 0.00 0.19 0.08 0.00 0.58 0.18 0.00 0.01 0.00
pagerank 0.19 0.38 0.55 0.70 0.63 0.18 0.04 0.29 0.49 0.77
class-match-measure 0.00 0.00 0.00 0.40 0.00 0.35 0.18 0.00 0.02 0.00
density-measure 0.30 0.00 0.08 0.11 0.00 0.50 0.11 0.00 0.07 0.00
semantic-similarity 0.00 0.00 0.00 0.40 0.00 0.35 0.18 0.00 0.00 0.00
between-measure 0.69 0.23 0.40 0.36 0.55 0.99 0.14 0.80 0.14 0.66

Table 5. NDCG

Person Name Event Title Loc. Addr. Music Org. Author Time
boolean 0.06 0.00 0.16 0.11 0.00 0.44 0.22 0.07 0.07 0.15
tf-idf 0.29 0.20 0.46 0.27 0.32 0.57 0.39 0.32 0.15 0.30
BM25 0.07 0.42 0.02 0.13 0.07 0.32 0.16 0.19 0.14 0.00
vector-space 0.12 0.00 0.06 0.10 0.00 0.36 0.16 0.00 0.01 0.00
pagerank 0.14 0.18 0.28 0.21 0.15 0.18 0.17 0.22 0.11 0.14
class-match-measure 0.00 0.00 0.00 0.15 0.00 0.17 0.16 0.00 0.05 0.00
density-measure 0.25 0.00 0.07 0.13 0.00 0.27 0.19 0.00 0.04 0.00
semantic-similarity 0.00 0.00 0.00 0.15 0.00 0.17 0.16 0.00 0.03 0.00
between-measure 0.22 0.18 0.17 0.24 0.31 0.69 0.15 0.59 0.19 0.19

4 Results

Table 4 and 5 show the MAP and the NDCG scores for all ranking models for each
query term, whereas Fig. 1 shows the P@10, MAP, DCG, NDCG scores for each of
the eight ranking models on all ten queries. For P@10 and MAP, tf-idf is the best
performing algorithm with betweenness measure as the second best and PageRank
as the third best. In terms of the correct order of top k results, we found again tf-idf
as the best performing algorithm, with betweenness measure and PageRank as the
second and third best, respectively.

4.1 Results Analysis
From the results of this experiment it can be seen, somehow surprisingly, that
content-based models (i.e. tf-idf and BM25) outperform the graph-based ranking
models for most queries. Overall, seven out of ten times, the content-based models
achieve a better or equal to the highest NDCG for all ranking algorithms.
However, although tf-idf achieved the highest mean average precision value of 0.6

in our experiment, it is still far from an ideal ranking performance. That is, because
the philosophy of tf-idf works well for the tf part, but not so for the idf part when
ranking resources in ontologies. The intuition behind tf-idf is that if a word appears
frequently in a document, it is important for the document and is given a high score
(i.e. tf value), but if it appears in many documents, it is not a unique identifier and is
given a low score (i.e. idf value). In ontologies, a resource that is reused across many
ontologies is a popular and relatively more important resource in the ontology and
the corpus. Therefore, in our experiment, tf-idf successfully ranks a resource high in
the result set if that resource is the central concept of the ontology (i.e. it is assigned
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Fig. 1. Effectiveness of Ranking Model

a high tf value). However, if a resource is also popular among the corpus, it is scored
down for the idf value. For example, http://xmlns.com/foaf/0.1/Person has the
highest tf value (i.e. 0.589) of all concepts in the FOAF ontology, but since it is also
the most popular concept in our corpus appearing in total in 162 distinct ontologies,
it does not appear among the top ten results of tf-idf.
Since BM25 is a cumulative relevance score for an ontology rooted in the tf and

idf values of a matched resource, the limitations of tf-idf are implicit in BM25 as
well. However, BM25 ranks concept specific ontologies higher in the result set for a
query term that matches to that particular concept. The reason is that for a specific
ontology, the query term matches to one of the important resource and many of
its attached resources. All these matched resources sum up to a higher BM25 score
for that ontology. For example, for the “Name” query, BM25 ranks all resources in
the GND ontology10 higher, since this ontology defines different types of Names. All
these types of names are important concepts of this ontology and finally leverage
the BM25 score for the GND ontology.
The vector space model did not perform well for any query. The main reason

is that the vector space model considers tf-idf values of resources as well as query
term/s. The idf value for a query term is calculated by considering the idf values of
all the resources in the corpus that matched the query term. Therefore, the effect of
the wrong assumptions for the idf values doubles for the vector space model.
PageRank ranks resources according to their popularity, that is why it performs,

for example, well in ranking highly the “Person” concept in the FOAF ontology
as it is a widely used ontology that is imported by many other ontologies. How-
ever, considering popularity in the corpus as the only factor for ranking ontologies
sometimes results in poor precision and recall. e.g. http://www.loria.fr/~coulet/
ontology/sopharm/version2.0/disease_ontology.owl#DOID_4977 with the la-
bel “other road accidents injuring unspecified person” is one of the popular resources
in our corpus but not at all relevant for the “Person” concept. Still, PageRank as-
signs it a higher rank based on its popularity in the corpus. The performance of the
PageRank algorithm could be significantly improved if it also takes the data for a
10 http://d-nb.info/standards/elementset/gnd#



given ontology into consideration (as is done in Semantic Search engines). Instead of
using only the import statement as the measure of popularity, the links from data
will give higher weights to resources in ontologies for which there exists data across
multiple domains.
As expected, the class match measures is the least precise algorithm in the ex-

periment. Since the algorithm ranks an ontology only on the basis of the label of
the matched resources within that ontology, an ontology with single or zero exact
matched labels and many partial match labels gets a higher relevance score than
those ontologies where few concepts are relatively more important. Secondly, assign-
ing the same weight to partially matched labels is problematic. For example, for
the query “Address” two partially matched resources “Postal address”11 and “Email
address of specimen provider principal investigator”12 are obviously not equally rele-
vant to the address definition provided in our user study. However, CMM uses equal
weights for both of these resources while computing the relevance score of their
corresponding ontologies.
The density measure model performs relatively poorly, because it assigns high

weights for super-class and sub-class relations. The intention is that the further
specified a resource is in an ontology the more important it is. However, in our study
the density measure model always favours upper level ontologies or highly layered
ontologies, where many subclasses and super classes are defined for a resource (e.g.
OBO ontologies), irrespective of its relevance to the query term.
The semantic similarity measure model considers the proximity of matched re-

sources in an ontology. Although this metrics can be useful when considering simi-
larity among the matched resources of two or more query terms of a multi-keyword
query, it performs poorly on single word queries. As mentioned earlier, users seem
to be not using multi-keyword queries in ontology search yet and thus the seman-
tic similarity measure appears to be not particularly useful for ranking resources in
ontologies.
The betweenness measure performs better than all other graph-based ranking

models because it calculates the relative importance of the resource to the partic-
ular ontology. A resource with a high betweenness value is the central resource of
that ontology [1], which means that the resource is well defined and important to
the ontology. Further, the betweenness measure performs well even with resources
that are irrelevant to the query term if they are not central resources of that ontol-
ogy, as their score will not contribute greatly to the cumulative relevance score for
the ontology. For example, irrelevant resources such as “dislocation” for the query
“location” do not appear high in the ranking of the betweenness measure, because
all resources with the label including “dislocation” are not central concepts in the
ontology where they are defined.
A general observation that can be made is that all ranking models other than tf-

idf ignore the relevance and importance of a resources to the query when assigning
a weight to a particular ontology for a given query term. This is more prominent
for graph-based approaches, where the cumulative ranking score for an ontology is
computed based on all the relevant terms of that ontology for this query. An on-
tology that has more matched URIs to the query term gets a higher weight than
an ontology that has few or only a single relevant resource in the ontology. For ex-
ample, http://www.ontologydesignpatterns.org/cp/owl/participation.owl#

11 http://purl.obolibrary.org/obo/IAO_0000422
12 http://purl.obolibrary.org/obo/OBI_0001903



Event with the label “event” is ranked “Extremely useful” to “Useful” for the query
“event” by our human experts. However, since this is the only relevant resource in
the ontology and it is a small ontology, none of the graph-based models ranked this
URI among the top ten resources.

5 Recommendations
Based on the analysis of our experiment we put forward the following four recommen-
dations that we believe could significantly improve the performance of the different
ranking algorithms.
1. Intended type vs. context resource: We believe that differentiating the in-

tended type from the context resource of a URI has a positive impact on the
performance of all ranking models. For example, for a resource in the GND on-
tology13 with the label “Name of the Person”, “Name” is the intended type,
whereas “Person” is the context resource. This resource URI appears in the
search results for both, the “Person” and the “Name” query term in our ex-
periment. The human experts ranked this resource on average from “Extremely
useful” to “Useful” for the “Name” query term and only “Slightly useful” for the
“Person” query. However, all the ranking algorithms assigned an equal weight to
this resource while calculating ranks for either of the two query terms. The per-
formance of the ranking models could be improved if they either only consider
those resource URIs whose intended type is matching the queries intended type
or if they assign a higher weight to such URIs as compared to the ones where
the query terms’ intended type matches only the context resource of that URI.

2. Exact vs. partial matches: As identified by Alani et al. [1] exact matching
should be favoured over partial matching in ranking ontologies. Whereas the class
match measure model assigns a value of 0.6 to exact matches and 0.4 to par-
tial matches, all other algorithms consider partial and exact matched resources
equally. For example, for the query “Location”, results that include “dislocation”
as partial matches should not be considered, since the word sense for location
and dislocation are different. Instead of assigning static weight factors, we believe
that other means of disambiguation between the actual meaning of the query
term and of the resource URI can significantly improve the performance of the
algorithms. Wordnet [12] or a disambiguation at the time of entry of the query
term could be efficient methods for this purpose.

3. Relevant relations vs. context relations: For the graph-based ranking mod-
els that calculate the relevance score according to the number of relationships for
the resource within that ontology (i.e. density measure and betweenness mea-
sure), direct properties, sub-classes and super-classes of a class have to be distin-
guished from relations (i.e. properties) that are very generic and are inferred from
its super-classes. For example, the class “email address”14 from one of the OBO
ontologies has properties like “part of continuant at some time”, “geographic fo-
cus’, “is about”, “has subject area”, “concretized by at some time”, “date/time
value” and “keywords”. However, not all of these properties are actually relevant
to the concept “email address”.

4. Resource relevance vs. ontology relevance: All ranking models discussed
in this study (except tf-idf), rank ontologies for the query term by considering

13 http://d-nb.info/standards/elementset/gnd#NameOfThePerson
14 http://purl.obolibrary.org/obo/IAO_0000429



all matched resources from a given ontology against the query term. This results
in a global rank for the ontology and all the resources that belong to that on-
tology share the same ontology relevance score. Therefore, in a result set, many
resources hold the same relevance score. While ordering resources with the same
relevance score from the ontology, the ranking models lack a mechanism to rank
resources within the same ontology. We believe that the tf value of the resource
could be a good measure to assign scores to resources within an ontology. There-
fore, while ranking all the resources of an ontology, the tf value can be used to
further rank resources that belong to the same ontology. Another solution could
be to compute individual measures (all measures other than tf-idf) for each re-
source, independent of how many other matched resources there are in the same
ontology.

6 Conclusion
This paper represents, to the best of our knowledge, the first systematic attempt
at establishing a benchmark for ontology ranking. We established a ground truth
through a user study with ten ontology engineers that we then used to compare
eight state-of-the-art ranking models to. When comparing the ranking models to
the ideal ranking obtained through the user study we observed that content-based
ranking models (i.e. tf-idf and BM25) slightly outperform graph-based models such
as betweenness measure. Even though content-based models performed best in this
study, the performance is still inferior to the performance of the same models on
ranking documents because of the structural differences between documents and
ontologies. We put forward four recommendations that we believe can considerably
improve the performance of the discussed models for ranking resources in ontologies.
In particular:
– Determine the intended type of a resource: A resource should only match

a query if the intended type of the query matches the intended type of the
resource.

– Treat partial matches differently: Instead of treating partial matches of the
query and a resource similar to exact matches or assigning a static weight factor,
the models should consider other means of disambiguating the actual meaning
of the query when matching it with a resource.

– Assign higher weight to direct properties: Instead of considering all re-
lations for a class equally when calculating the centrality score in graph-based
models, the models should consider assigning a higher score to relations that
describe the class directly.

– Compute a resource relevance: Additionally to computing a relevance score
for an ontology as a whole, all ranking models should be changed so that they
also compute a score for individual resources within the ontology.

In conclusion, we believe that with few modifications several of the tested ranking
models can be significantly improved for the task of ranking resources in ontologies.
We also believe that the proposed benchmark suite is well-suited for evaluating
new ranking models. We plan to maintain, improve and extend this benchmark, in
particular by adding further queries and updating the ontology collection as new
ontologies become available. We expect that this will motivate others to produce
tailor-made and better methods for searching resources within ontologies.
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